Edge AI with ML.NET (Tutorial) teaches you to create an MCP (Model Context Protocol) Tool that exposes production KPIs and historical data to AI models, enabling intelligent analysis of your industrial processes.
Prerequisites:
- Complete Scripts & Data Enrichment (Tutorial)
- Basic understanding of Script Classes
- Tags configured for production metrics
In this page:
Table of Contents maxLevel 2 minLevel 2 indent 10px exclude Steps style none
Step 1: Configure Historian
- Navigate to Historian → Tables
- Create table:
ProductionData
- Add tags:
Tag.ProductionRate
Tag.Efficiency
Tag.QualityScore
Tag.DowntimeMinutes
- Set scan rate: 60 seconds
- Enable storage
Step 2: Create KPI Calculator Class
- Go to Scripts → Classes
- Create class:
KPICalculator
- Configure as standard Methods class
csharp
public double CalculateOEE(double availability, double performance, double quality)
{
return availability * performance * quality * 100;
}
public double GetAverageProduction(DateTime startTime, DateTime endTime)
{
// Calculate average production rate over period
double totalProduction = @Tag.TotalUnits;
double hours = (endTime - startTime).TotalHours;
return hours > 0 ? totalProduction / hours : 0;
}
public string GetProductionStatus()
{
if (@Tag.ProductionRate > 100)
return "High Performance";
else if (@Tag.ProductionRate > 80)
return "Normal";
else
return "Below Target";
}
Step 3: Create MCP Tool Class
- Create new class:
ProductionMCPTool
- Select MCP Tool type
- Add decorated methods:
csharp
[MCPMethod(Description = "Get current production KPIs")]
public object GetCurrentKPIs()
{
return new {
ProductionRate = @Tag.ProductionRate,
Efficiency = @Tag.Efficiency,
OEE = @Script.Class.KPICalculator.CalculateOEE(
@Tag.Availability, @Tag.Performance, @Tag.Quality),
Status = @Script.Class.KPICalculator.GetProductionStatus(),
Timestamp = DateTime.Now
};
}
[MCPMethod(Description = "Get production history for specified hours")]
public object GetProductionHistory(
[MCPParameter(Description = "Hours to look back")] int hours)
{
var endTime = DateTime.Now;
var startTime = endTime.AddHours(-hours);
// Query historian
var data = @Historian.Table.ProductionData.GetData(startTime, endTime);
return new {
Period = $"Last {hours} hours",
AverageRate = @Script.Class.KPICalculator.GetAverageProduction(startTime, endTime),
TotalUnits = @Tag.TotalUnits,
DataPoints = data.Rows.Count
};
}
[MCPMethod(Description = "Analyze production trend")]
public string AnalyzeProductionTrend(
[MCPParameter(Description = "Time period in hours")] int periodHours)
{
var current = @Tag.ProductionRate;
var average = @Script.Class.KPICalculator.GetAverageProduction(
DateTime.Now.AddHours(-periodHours), DateTime.Now);
if (current > average * 1.1)
return "Trending Up - Production improving";
else if (current < average * 0.9)
return "Trending Down - Requires attention";
else
return "Stable - Within normal range";
}
Step 4: Test MCP Tool
- Start runtime
- Verify KPIs calculating
- Check historian data collection
- Test with AI assistant:
- "What are the current production KPIs?"
- "Show me production history for last 8 hours"
- "Analyze the production trend"
Edge AI with ML.NET (Tutorial)
This tutorial demonstrates using ML.NET 4.0 for real-time anomaly detection on sensor data using Script Tasks.
Prerequisites:
- Complete Scripts & Data Enrichment (Tutorial)
- Tags for sensor monitoring
- ML.NET 4.0 references (included in FrameworX 10.1)
Step 1: Create Monitoring Tags
- Navigate to Unified Namespace → Tags
- Create tags:
Tag.SensorValue
(Double) - Current readingTag.AnomalyScore
(Double) - Detection scoreTag.IsAnomaly
(Boolean) - Alert flagTag.Threshold
(Double) - Detection threshold (default: 0.3)
Step 2: Create ML Detection Task
- Go to Scripts → Tasks
- Create task:
AnomalyDetector
- Set trigger: Period = 1000ms
- Add code:
csharp
// Simple spike detection using ML.NET
using Microsoft.ML;
using Microsoft.ML.Data;
// Static ML context (initialized once)
if (@Tag.MLContext == null)
{
@Tag.MLContext = new MLContext(seed: 0);
@Tag.DetectionEngine = InitializeDetector();
}
// Data class for ML model
public class SensorData
{
public float Value { get; set; }
}
public class AnomalyPrediction
{
[VectorType(3)]
public double[] Prediction { get; set; }
}
// Initialize detector (runs once)
private ITransformer InitializeDetector()
{
var dataView = @Tag.MLContext.Data.LoadFromEnumerable(new List<SensorData>());
var pipeline = @Tag.MLContext.Transforms
.DetectSpikeBySsa(
outputColumnName: "Prediction",
inputColumnName: "Value",
confidence: 95,
pvalueHistoryLength: 30,
trainingWindowSize: 90,
seasonalityWindowSize: 30);
return pipeline.Fit(dataView);
}
// Detection logic (runs every second)
var currentValue = (float)@Tag.SensorValue;
var data = new SensorData { Value = currentValue };
var prediction = @Tag.DetectionEngine.Transform(
@Tag.MLContext.Data.LoadFromEnumerable(new[] { data }));
var result = @Tag.MLContext.Data
.CreateEnumerable<AnomalyPrediction>(prediction, false)
.First();
// Update tags with results
@Tag.AnomalyScore = result.Prediction[0]; // Spike score
@Tag.IsAnomaly = result.Prediction[0] > @Tag.Threshold;
// Log anomalies
if (@Tag.IsAnomaly)
{
@Alarm.GlobalSettings.AuditTrail.AddCustomMessage(
$"Anomaly detected: Sensor={currentValue:F2}, Score={result.Prediction[0]:F3}");
}
Step 3: Create Simple Simulator
- Create task:
SensorSimulator
- Set trigger: Period = 500ms
- Add simulation code:
csharp
// Simulate normal sensor data with occasional spikes
Random rand = new Random();
double baseValue = 50.0;
double noise = rand.NextDouble() * 5 - 2.5;
// Inject anomaly occasionally (5% chance)
if (rand.NextDouble() < 0.05)
{
@Tag.SensorValue = baseValue + (rand.NextDouble() * 30 + 20); // Spike
}
else
{
@Tag.SensorValue = baseValue + noise; // Normal variation
}
Step 4: Create Monitoring Display
- Create display with:
- Trend chart for SensorValue
- Indicator for IsAnomaly
- Text display for AnomalyScore
- Threshold adjustment slider
Step 5: Test ML Detection
- Start runtime
- Observe sensor simulation
- Watch for anomaly detection
- Adjust threshold as needed
- Check audit trail for logged anomalies
Next Steps
- Advanced MCP Tools → Complex multi-tool scenarios
- ML.NET Models → Regression and classification
- Edge Computing → Deploy to field devices
These tutorials provide simple, practical starting points for both MCP Tools and ML.NET integration, focusing on real industrial scenarios while keeping complexity minimal for learning purposes.
In this section...
Page Tree | ||||
---|---|---|---|---|
|
...