Edge AI with MCP Tool (Tutorial) teaches you to create an MCP (Model Context Protocol) Tool that exposes production KPIs and historical data to AI models, enabling intelligent analysis of your industrial processes.
Prerequisites:
ProductionData
Tag.ProductionRate
Tag.Efficiency
Tag.QualityScore
Tag.DowntimeMinutes
KPICalculator
csharp
public double CalculateOEE(double availability, double performance, double quality)
{
return availability * performance * quality * 100;
}
public double GetAverageProduction(DateTime startTime, DateTime endTime)
{
// Calculate average production rate over period
double totalProduction = @Tag.TotalUnits;
double hours = (endTime - startTime).TotalHours;
return hours > 0 ? totalProduction / hours : 0;
}
public string GetProductionStatus()
{
if (@Tag.ProductionRate > 100)
return "High Performance";
else if (@Tag.ProductionRate > 80)
return "Normal";
else
return "Below Target";
}
ProductionMCPTool
csharp
[MCPMethod(Description = "Get current production KPIs")]
public object GetCurrentKPIs()
{
return new {
ProductionRate = @Tag.ProductionRate,
Efficiency = @Tag.Efficiency,
OEE = @Script.Class.KPICalculator.CalculateOEE(
@Tag.Availability, @Tag.Performance, @Tag.Quality),
Status = @Script.Class.KPICalculator.GetProductionStatus(),
Timestamp = DateTime.Now
};
}
[MCPMethod(Description = "Get production history for specified hours")]
public object GetProductionHistory(
[MCPParameter(Description = "Hours to look back")] int hours)
{
var endTime = DateTime.Now;
var startTime = endTime.AddHours(-hours);
// Query historian
var data = @Historian.Table.ProductionData.GetData(startTime, endTime);
return new {
Period = $"Last {hours} hours",
AverageRate = @Script.Class.KPICalculator.GetAverageProduction(startTime, endTime),
TotalUnits = @Tag.TotalUnits,
DataPoints = data.Rows.Count
};
}
[MCPMethod(Description = "Analyze production trend")]
public string AnalyzeProductionTrend(
[MCPParameter(Description = "Time period in hours")] int periodHours)
{
var current = @Tag.ProductionRate;
var average = @Script.Class.KPICalculator.GetAverageProduction(
DateTime.Now.AddHours(-periodHours), DateTime.Now);
if (current > average * 1.1)
return "Trending Up - Production improving";
else if (current < average * 0.9)
return "Trending Down - Requires attention";
else
return "Stable - Within normal range";
}
This tutorial demonstrates using ML.NET 4.0 for real-time anomaly detection on sensor data using Script Tasks.
Prerequisites:
Tag.SensorValue
(Double) - Current readingTag.AnomalyScore
(Double) - Detection scoreTag.IsAnomaly
(Boolean) - Alert flagTag.Threshold
(Double) - Detection threshold (default: 0.3)AnomalyDetector
csharp
// Simple spike detection using ML.NET
using Microsoft.ML;
using Microsoft.ML.Data;
// Static ML context (initialized once)
if (@Tag.MLContext == null)
{
@Tag.MLContext = new MLContext(seed: 0);
@Tag.DetectionEngine = InitializeDetector();
}
// Data class for ML model
public class SensorData
{
public float Value { get; set; }
}
public class AnomalyPrediction
{
[VectorType(3)]
public double[] Prediction { get; set; }
}
// Initialize detector (runs once)
private ITransformer InitializeDetector()
{
var dataView = @Tag.MLContext.Data.LoadFromEnumerable(new List<SensorData>());
var pipeline = @Tag.MLContext.Transforms
.DetectSpikeBySsa(
outputColumnName: "Prediction",
inputColumnName: "Value",
confidence: 95,
pvalueHistoryLength: 30,
trainingWindowSize: 90,
seasonalityWindowSize: 30);
return pipeline.Fit(dataView);
}
// Detection logic (runs every second)
var currentValue = (float)@Tag.SensorValue;
var data = new SensorData { Value = currentValue };
var prediction = @Tag.DetectionEngine.Transform(
@Tag.MLContext.Data.LoadFromEnumerable(new[] { data }));
var result = @Tag.MLContext.Data
.CreateEnumerable<AnomalyPrediction>(prediction, false)
.First();
// Update tags with results
@Tag.AnomalyScore = result.Prediction[0]; // Spike score
@Tag.IsAnomaly = result.Prediction[0] > @Tag.Threshold;
// Log anomalies
if (@Tag.IsAnomaly)
{
@Alarm.GlobalSettings.AuditTrail.AddCustomMessage(
$"Anomaly detected: Sensor={currentValue:F2}, Score={result.Prediction[0]:F3}");
}
SensorSimulator
csharp
// Simulate normal sensor data with occasional spikes
Random rand = new Random();
double baseValue = 50.0;
double noise = rand.NextDouble() * 5 - 2.5;
// Inject anomaly occasionally (5% chance)
if (rand.NextDouble() < 0.05)
{
@Tag.SensorValue = baseValue + (rand.NextDouble() * 30 + 20); // Spike
}
else
{
@Tag.SensorValue = baseValue + noise; // Normal variation
}
These tutorials provide simple, practical starting points for both MCP Tools and ML.NET integration, focusing on real industrial scenarios while keeping complexity minimal for learning purposes.