Monitoring 300+ Remote Stations

A major midstream operator needed to modernize monitoring across hundreds of remote pipeline stations while maintaining 24/7 operations. Legacy RTUs required expensive middleware, limited data collection, and provided no local intelligence.

[Architecture Overview]

EdgeConnect - Unified Namespace Originator

Deployment Pattern

Key Design Decisions

[Technical Specifications]

Architecture Components

Component

Specification

Quantity

Edge Nodes

EdgeConnect in Cisco routers

300+

Protocols

Modbus RTU, DNP3, HART

Multiple

Data Points

50-200 per site

35,000 total

Update Rate

1 second local, 30 second to center

Optimized

Storage

30 days local SQL

Per site

Redundancy

Store-and-forward, dual path

All sites

[Implementation Details]

Edge Intelligence Configuration

At Each Station (EdgeConnect)

Regional Hubs (DataHub Station)

Control Center (Enterprise Unlimited)

[Data Flow]

UNS Architecture

  1. Field Level: Sensors → PLCs/RTUs → EdgeConnect

  2. Edge UNS: Local namespace definition, context added

  3. Regional UNS: Area aggregation via DataHub Station

  4. Enterprise UNS: Complete operational view via Enterprise Unlimited

  5. Cloud Integration: Select KPIs to Azure for corporate dashboards

[Results Achieved]

Measured Outcomes

Operational Improvements

Technical Achievements

[Scalability Path]

Growth Architecture

Phase 1 (Completed): 300 pipeline stations
Phase 2 (In Progress): Add 150 compressor stations
Phase 3 (Planned): Integrate 50 storage facilities
Future: ML models for predictive maintenance

All phases use same architecture pattern with no redesign required.

[Bottom Section]

Build This Architecture

Deployment Time for Phase 1: 8-12 weeks for 50 sites
Current Stage: 300+ sites
Required Products:
EdgeConnect ($750/site), Enterprise Unlimited ($11,900), DataHub Station ($2,000 x 6)
Total Architecture Cost: ~$250,000 for complete 300-site system

1. The Problem

Challenge: Operate and observe hundreds of distributed midstream sites with PLCs and intermittent, bandwidth-limited links—while keeping on-site autonomy and ensuring a unified, secure, and scalable publish/subscribe model for corporate operations, analytics, and alarms.

Specific pain points:

Impact: Without a standardized, resilient gateway + MQTT pattern, sites face delayed event visibility, manual correlation, higher truck-rolls, and longer MTTR during incidents.

Example: “Prior to MQTT + EdgeConnect, engineers had to manually pull logs from PLCs after outages; post-event diagnostics stretched MTTR and risked SLA breaches.”

2. The Solution

2.1 Overview

2.2 Logical Diagram (high level)

<div style="margin:0;padding:0;line-height:0;">
  <svg xmlns="http://www.w3.org/2000/svg"
       viewBox="0 0 1000 220"
       width="100%"
       style="display:block;margin:0;padding:0;vertical-align:top;font-family:ui-monospace,Menlo,Consolas,monospace;font-size:13px;">
    <defs>
      <marker id="arrow" viewBox="0 0 10 10" refX="10" refY="5" markerWidth="10" markerHeight="10" orient="auto">
        <path d="M0 0 L10 5 L0 10 Z" fill="#333"/>
      </marker>
    </defs>

    <!-- Column boxes -->
    <rect x="20"  y="12" width="300" height="120" rx="8" ry="8" fill="#f9f9f9" stroke="#333"/>
    <rect x="350" y="12" width="300" height="120" rx="8" ry="8" fill="#f9f9f9" stroke="#333"/>
    <rect x="680" y="12" width="300" height="120" rx="8" ry="8" fill="#f9f9f9" stroke="#333"/>

    <!-- Titles -->
    <text x="34"  y="34">[PLC Layer: ControlLogix / DF1]</text>
    <text x="364" y="34">[Edge Layer: Per-Site Gateway]</text>
    <text x="694" y="34">[Network Layer]</text>

    <!-- Bullets -->
    <text x="48"  y="58">• CIP/EtherNet/IP (CLX)</text>
    <text x="48"  y="78">• DF1 (serial)</text>

    <text x="378" y="58">• FrameworX (EdgeConnect on Linux)</text>
    <text x="378" y="78">• Poll ? Buffer ? Publish</text>
    <text x="378" y="98">• Watchdog, AutoStart</text>

    <text x="708" y="58">• MQTT brokers (HA, N=4)</text>
    <text x="708" y="78">• Subscribers: Third-Party brokers consumers</text>

    <!-- Bottom flow: TCP/IP -> Router -> Broker -->
    <text x="40"  y="170">TCP/IP</text>
    <line x1="90"  y1="165" x2="420" y2="165" stroke="#333" marker-end="url(#arrow)"/>

    <rect x="430" y="148" width="120" height="34" rx="6" ry="6" fill="#fff" stroke="#333"/>
    <text x="472" y="170" text-anchor="middle">Router</text>

    <line x1="550" y1="165" x2="820" y2="165" stroke="#333" marker-end="url(#arrow)"/>

    <rect x="830" y="148" width="120" height="34" rx="6" ry="6" fill="#fff" stroke="#333"/>
    <text x="890" y="170" text-anchor="middle">Broker</text>
  </svg>
</div>


2.3 Topology

Layer

Component

Role

Notes

Field

ControlLogix (CIP), DF1 devices

Signals/controls

-

Edge (Site)

EdgeConnect (Linux)

Collection, buffer, publish

Runs on router/IPC; AutoStart; Watchdog; local logging

Transport

Satellite / WAN

Telemetry backhaul

-

Brokers

MQTT brokers (HA, N=4)

Pub/Sub backbone

Persistent sessions, retained health topics

Consumers

SCADA/Historian/Analytics

Enterprise visibility & actions

-

2.4 Network Architecture

2.5 Redundancy & Failover

2.6 Protocols & Equipment

2.7 Data Model & Topics

2.8 Scale & Capacity

2.9 Observability & Health

3. Key Enablers

Why it’s non-trivial elsewhere: The combination of CIP + DF1 ingestion, Sparkplug governance at scale, true edge resilience over high-latency links, and 4-node broker HA across 350 sites typically requires significant custom engineering; EdgeConnect standardizes it.

4. The Results